THERMAL STABILITY OF THE NEW ESRF EXTREMELY BRILLIANT SOURCE

B. TAMPIIGNY, Y. DABIN, F. THOMAS1, J.F. BOUTEILLE, L. FARVACQUE, T. MARCHIAL, F. FAVIER, P. ROUX-BUISSON, J.C. BIASCI, P. RAIMONDI, D. MARTIN, M. DIOT, A. FLAVEN BOIS

European Synchrotron Radiation Facility (ESRF), Grenoble, France
1also at Institut Laue-Langevin (ILL), Grenoble, France
Instabilities
Instabilities

1. Permanent static errors from the origin
2. Permanent variable errors (quick effects)
3. Errors triggered by beam operation
4. Long period errors
INTRODUCTION

Instabilities

1. Permanent static errors from the origin
2. Permanent variable errors (quick effects)
3. Errors triggered by beam operation
4. Long period errors

 mechanical source effects
Instabilities

1. Permanent static errors from the origin
2. Permanent variable errors (quick effects)
3. Errors triggered by beam operation
4. Long period errors

→ mechanical source effects

→ thermal source effects
Instabilities

1. Permanent static errors from the origin
2. Permanent variable errors (quick effects)
3. Errors triggered by beam operation
4. Long period errors

Stable stored beam only after a period of 4 days

→ mechanical source effects

→ thermal source effects
Instabilities

1. Permanent static errors from the origin
2. Permanent variable errors (quick effects)
3. Errors triggered by beam operation
4. Long period errors

- Stable stored beam only after a period of 4 days
- Longitudinal tunnel air-cooling temperature rise of ~2°C along a tunnel quarter

- Mechanical source effects
- Thermal source effects
Instabilities

1. Permanent static errors from the origin
2. Permanent variable errors (quick effects)
3. Errors triggered by beam operation
4. Long period errors

Stable stored beam only after a period of 4 days
Longitudinal tunnel air-cooling temperature rise of ~2°C along a tunnel quarter

Errors observed, compensated, operated for 20 years.

mechanical source effects
thermal source effects
Instabilities

1. Permanent static errors from the origin
2. Permanent variable errors (quick effects)
3. Errors triggered by beam operation
4. Long period errors

Stable stored beam only after a period of 4 days
Longitudinal tunnel air-cooling temperature rise of ~2°C along a tunnel quarter

Errors observed, compensated, operated for 20 years.

But with new EBS: need to identify these thermal effects to improve more systematically the source stability.
Instabilities

1. Permanent static errors from the origin
2. Permanent variable errors (quick effects)
3. Errors triggered by beam operation
4. Long period errors

Stable stored beam only after a period of 4 days
Longitudinal tunnel air-cooling temperature rise of \(\sim 2^\circ\)C along a tunnel quarter

Errors observed, compensated, operated for 20 years.

But with new EBS: need to identify these thermal effects to improve more systematically the source stability.
Instabilities

1. Permanent static errors from the origin
2. Permanent variable errors (quick effects)
3. Errors triggered by beam operation
4. Long period errors

Stable stored beam only after a period of 4 days
Longitudinal tunnel air-cooling temperature rise of ~2°C along a tunnel quarter

Errors observed, compensated, operated for 20 years.

But with new EBS: need to identify these thermal effects to improve more systematically the source stability.

Heat sources
electromagnets, cables, RF, absorbers

Thermal system
Instabilities

1. Permanent static errors from the origin
2. Permanent variable errors (quick effects)
3. Errors triggered by beam operation
4. Long period errors

Stable stored beam only after a period of 4 days

Longitudinal tunnel air-cooling temperature rise of \(\sim 2^\circ C \) along a tunnel quarter

Errors observed, compensated, operated for 20 years.

But with new EBS: need to identify these thermal effects to improve more systematically the source stability.

Heat sources
- electromagnets, cables, RF, absorbers

Cooling systems
- air ventilation, water cooling

Mechanical source effects

Thermal source effects
INTRODUCTION

Instabilities

1. Permanent static errors from the origin
2. Permanent variable errors (quick effects)
3. Errors triggered by beam operation
4. Long period errors

→ Stable stored beam only after a period of 4 days
→ Longitudinal tunnel air-cooling temperature rise of ~2°C along a tunnel quarter

Errors observed, compensated, operated for 20 years.
But with new EBS: need to identify these thermal effects to improve more systematically the source stability.

Heat sources
- electromagnets, cables, RF, absorbers

Cooling systems
- air ventilation, water cooling

High thermal inertia suspected
- electromagnets, girders, concrete
Instabilities

1. Permanent static errors from the origin
2. Permanent variable errors (quick effects)
3. Errors triggered by beam operation
4. Long period errors

> Stable stored beam only after a period of 4 days
> Longitudinal tunnel air-cooling temperature rise of ~2°C along a tunnel quarter

Errors observed, compensated, operated for 20 years.

But with new EBS: need to identify these thermal effects to improve more systematically the source stability.

Heat sources
- Electromagnets, cables, RF, absorbers

Exterior perturbations
- Exp. hall and groundwater temperatures

Cooling systems
- Air ventilation, water cooling

High thermal inertia suspected
- Electromagnets, girders, concrete
Instabilities

1. Permanent static errors from the origin
2. Permanent variable errors (quick effects)
3. Errors triggered by beam operation
4. Long period errors

- Stable stored beam only after a period of 4 days
- Longitudinal tunnel air-cooling temperature rise of ~2°C along a tunnel quarter

Errors observed, compensated, operated for 20 years.

But with new EBS: need to identify these thermal effects to improve more systematically the source stability.
EBS ELECTROMAGNETS

• 34 different electromagnets
• 34 different electromagnets
• Most of their coils are water cooled (in series or parallel)
• 34 different electromagnets
• Most of their coils are water cooled (in series or parallel)
- 34 different electromagnets
- Most of their coils are water cooled (in series or parallel)

→ What % of heat from each electromagnet goes in air?
• 34 different electromagnets
• Most of their coils are water cooled (in series or parallel)

What % of heat from each electromagnet goes in air?
What is the increase in temperature of the electromagnets?
• 34 different electromagnets
• Most of their coils are water cooled (in series or parallel)

What % of heat from each electromagnet goes in air?
What is the increase in temperature of the electromagnets?
What is the period of the steady state establishment?
• 34 different electromagnets
• Most of their coils are water cooled (in series or parallel)

What % of heat from each electromagnet goes in air?
What is the increase in temperature of the electromagnets?
What is the period of the steady state establishment?

→ FEA exploring work
• 34 different electromagnets
• Most of their coils are water cooled (in series or parallel)

→ What % of heat from each electromagnet goes in air?
→ What is the increase in temperature of the electromagnets?
→ What is the period of the steady state establishment?

→ FEA exploring work

very first CFD model (very simplified)

3D ¼ tunnel ventilation → velocity field → 3D more local
post processing

second CFD and thermal model (finer)

Heat transfer analysis: forced convection

compared with natural convection
• 34 different electromagnets
• Most of their coils are water cooled (in series or parallel)

→ What % of heat from each electromagnet goes in air?
→ What is the increase in temperature of the electromagnets?
→ What is the period of the steady state establishment?

→ FEA exploring work

Very first CFD model (very simplified)

3D ¼ tunnel ventilation → Post processing → Velocity field → Inserted in → 3D more local

Second CFD and thermal model (finer)

Heat transfer analysis: forced convection compared with natural convection

Inner volume of electromagnets: natural convection is predominant
• Each coil dissipates 500W of heat (2000W total)
• Coils are water cooled in parallel
 0.45L/min
 Tinlet = 24°C
 Toutlet = 40°C
• Air: only natural convection is considered
 Tambient considered constant at 24°C
• Each coil dissipates 500W of heat (2000W total)
• Coils are water cooled in parallel
 0.45L/min
 Tinlet = 24°C
 Toutlet = 40°C
• Air: only natural convection is considered
 Tambient considered constant at 24°C

→ Even simplified, a full 3D model remains too heavy for CFD
• Each coil dissipates 500W of heat (2000W total)
• Coils are water cooled in parallel

 0.45L/min
 Tinlet = 24°C
 Toutlet = 40°C

• Air: only natural convection is considered
 Tambient considered constant at 24°C

→ Even simplified, a full 3D model remains too heavy for CFD
Each coil dissipates 500W of heat (2000W total)

- Coils are water cooled in parallel
 - 0.45L/min
 - Tinlet = 24°C
 - Toutlet = 40°C

- Air: only natural convection is considered
 - Tambient considered constant at 24°C

Even simplified, a full 3D model remains too heavy for CFD
• Each coil dissipates 500W of heat (2000W total)
• Coils are water cooled in parallel
 0.45L/min
 Tinlet = 24°C
 Toutlet = 40°C
• Air: only natural convection is considered
 Tambient considered constant at 24°C

→ Even simplified, a full 3D model remains too heavy for CFD
• Each coil dissipates 500W of heat (2000W total)
• Coils are water cooled in parallel
 0.45L/min
 Tinlet = 24°C
 Toutlet = 40°C
• Air: only natural convection is considered
 Tambient considered constant at 24°C

Even simplified, a full 3D model remains too heavy for CFD

convective coefficient computed with Nusselt correlation (natural convection)

Tcoil = 40°C
gravity forces

local convective coefficients computed all along inside surfaces of the quadrupole
• Local convective coefficients from 2D model: into a 3D model
• A part of the girder is modeled
• Same boundary conditions than 2D model, but without CFD and assuming ground temperature at 24°C
• Initially, quadrupole at 24°C
EBS QUADRUPOLE – TEMPERATURE

- Local convective coefficients from 2D model into a 3D model
- A part of the girder is modeled
- Same boundary conditions than 2D model, but without CFD and assuming ground temperature at 24°C
- Initially, quadrupole at 24°C

Temperature field [°C]

Average temperature: 25.4°C (+1.4°C from initial value)
• Local convective coefficients from 2D model: into a 3D model
• A part of the girder is modeled
• Same boundary conditions than 2D model, but without CFD and assuming ground temperature at 24°C
• Initially, quadrupole at 24°C

Average temperature (yoke & poles) [°C] against time [d]

Steady state reached after: $5\tau \sim 1.5$ days
Time constant $\tau \sim 0.3$ day

Average temperature: 25.4°C (+1.4°C from initial value)
• Local convective coefficients from 2D model: into a 3D model
• A part of the girder is modeled
• Same boundary conditions than 2D model, but without CFD and assuming ground temperature at 24°C
• Initially, quadrupole at 24°C

Average temperature: 25.4°C (+1.4°C from initial value)

Steady state reached after: $5\tau \sim 1.5$ days
Time constant $\tau \sim 0.3$ day

Average temperature (yoke & poles) [°C] against time [d]

time constant of ~0.3 day

temperature increase by ~1°C
• Local convective coefficients from 2D model: into a 3D model
• A part of the girder is modeled
• Same boundary conditions than 2D model, but without CFD and assuming ground temperature at 24°C
• Initially, quadrupole at 24°C

Average temperature: 25.4°C (+1.4°C from initial value)

Steady state reached after: 5τ ~1.5 days
Time constant τ ~0.3 day

Temperature increase by ~1°C

time constant of ~0.3 day
observed experimentally 😊
EBS QUADRUPOLE – TEMPERATURE

- Local convective coefficients from 2D model into a 3D model
- A part of the girder is modeled
- Same boundary conditions than 2D model, but without CFD and assuming ground temperature at 24°C
- Initially, quadrupole at 24°C

Average temperature: 25.4°C (+1.4°C from initial value)

Steady state reached after: \(\tau \sim 1.5 \) days
Time constant \(\tau \sim 0.3 \) day

- Temperature increase by \(~1°C\) observed experimentally 😊
- Temperature increase by \(~1°C\) not observed experimentally 😞 (actually it is +3°C)
EBS QUADRUPOLE – HEAT BALANCE

Diagram showing heat balance of a quadrupole: 2.8W (holders), 6.7W (air), 3.9W, 2.1W, 0.3W to Concrete ground. 8.3W (spacers), 3.9W, 1.8W to Air exterior. 16.3W.
EBS QUADRUPOLE – HEAT BALANCE

- Coils → Quadrupole:
 - 17.7W in
 - 46.9% from spacers
 - 53.1% from air
 - 9.5W out
 - 29.5% from holders
 - 70.5% from air
- 24.2W in air (1.2% of the total heat in coils)
- 0.3W in ground

FEA EXP.
• Coils → Quadrupole:
 17.7W in
 - 46.9% from spacers
 - 53.1% from air
 9.5W out
 - 29.5% from holders
 - 70.5% from air
• 24.2W in air (1.2% of the total heat in coils)
• 0.3W in ground

<table>
<thead>
<tr>
<th>FEA</th>
<th>EXP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tav. +1°C</td>
<td>Tav. +3°C</td>
</tr>
</tbody>
</table>
Coils → Quadrupole:
17.7W in
- 46.9% from spacers
- 53.1% from air
9.5W out
- 29.5% from holders
- 70.5% from air
• 24.2W in air (1.2% of the total heat in coils)
• 0.3W in ground

<table>
<thead>
<tr>
<th>FEA</th>
<th>EXP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tav. +1°C</td>
<td>Tav. +3°C</td>
</tr>
<tr>
<td>1% of heat in air</td>
<td>4% of heat in air</td>
</tr>
</tbody>
</table>
Coils Quadrupole:
- 17.7W in
 - 46.9% from spacers
 - 53.1% from air
- 9.5W out
 - 29.5% from holders
 - 70.5% from air
- 24.2W in air (1.2% of the total heat in coils)
- 0.3W in ground

FEA EXP.
<table>
<thead>
<tr>
<th>Tav. +1°C</th>
<th>Tav. +3°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% of heat in air</td>
<td>4% of heat in air</td>
</tr>
</tbody>
</table>

EXP. magnet more than twice as deep as the FEA one
EBS QUADRUPOLE – HEAT BALANCE

- Coils → Quadrupole:
 - 17.7W in
 - 46.9% from spacers
 - 53.1% from air
 - 9.5W out
 - 29.5% from holders
 - 70.5% from air
- 24.2W in air (1.2% of the total heat in coils)
- 0.3W in ground

FEA	EXP.
Tav. +1°C | Tav. +3°C
1% of heat in air | 4% of heat in air

EXP. magnet more than twice as deep as the FEA one
more heat added to quadrupole
more investigations to do
EBS QUADRUPOLE – THERMOMECHANICAL DISPLACEMENTS

Continuity
EBS QUADRUPOLE – THERMOMECHANICAL DISPLACEMENTS

Continuity

Contacts

Displacement = 0
Full scale mock-up girder prototype with power cables inside
GIRDER MOCK-UP

Full scale mock-up girder prototype with power cables inside
Why cables inside the girder?
Full scale mock-up girder prototype with power cables inside

Why cables inside the girder?

- mainly for space savings reasons
Full scale mock-up girder prototype with power cables inside

Why cables inside the girder?

- mainly for space savings reasons
- might be dangerous (girder deformation due to the heat)
- difficult to implement
Full scale mock-up girder prototype with power cables inside

Why cables inside the girder?

mainly for space savings reasons

But: • might be dangerous (girder deformation due to the heat)
 • difficult to implement

Mock-up:
• probed with several PT100
• girder is isolated by walls and ceiling to reproduce a cell of the storage ring
• fan is integrated
GIRDER MOCK-UP – TEMPERATURE PROBES

Power and ventilation Transient phase at Chartreuse test model

- Concrete floor left side
- Concrete floor right side
- Lower side girder
- Top side girder
- Girder probes
- Floor probes

Ventilation cut and power on cables still cut

Time scale [days] in July - August 2016
EBS girder thermal behaviour at Chartreuse test model

- No Ventilation on tunnel this period
- Experiment hall general ventilation restart
- Ventilation cooling start at 25% of nominal flow
- Start 100% nominal flow

Temperature measurement [°C]

Lower girder downstream
Upper girder downstream

Timescale [days during August 2016]
• Cables inside the girder: abandoned
CONCLUSION

• Cables inside the girder: abandoned

• 4 days before reaching: complex to solve
• Cables inside the girder: abandoned

• 4 days before reaching: complex to solve

→ probably many causes
→ magnet heat source important
CONCLUSION

• Cables inside the girder: abandoned

• 4 days before reaching: complex to solve
 → probably many causes
 → magnet heat source important

• +2°C in the tunnel: we are studying different way to solve it
CONCLUSION

• Cables inside the girder: abandoned

• 4 days before reaching: complex to solve
 → probably many causes
 → magnet heat source important

• +2°C in the tunnel: we are studying different way to solve it
 → adding additional cooling in the tunnel
 → preventing heat source to affect relevant parts of the system (ex: coils)
• Cables inside the girder: abandoned

• 4 days before reaching: complex to solve
 → probably many causes
 → magnet heat source important

• +2°C in the tunnel: we are studying different way to solve it
 → adding additional cooling in the tunnel
 → preventing heat source to affect relevant parts of the system (ex: coils)

• Investigations continue!
• Cables inside the girder: abandoned

• 4 days before reaching: complex to solve
 → probably many causes
 → magnet heat source important

• +2°C in the tunnel: we are studying different way to solve it
 → adding additional cooling in the tunnel
 → preventing heat source to affect relevant parts of the system (ex: coils)

• Investigations continue!
 → mock-ups and FEA explorations
 → listening all heat sources (RF, cables and absorbers already under investigations)
 → influence of concrete on storage ring thermal stability?
CONCLUSION

- Cables inside the girder: abandoned

- 4 days before reaching: complex to solve
 - probably many causes
 - magnet heat source important

- +2°C in the tunnel: we are studying different way to solve it
 - adding additional cooling in the tunnel
 - preventing heat source to affect relevant parts of the system (ex: coils)

- Investigations continue!
 - mock-ups and FEA explorations
 - listening all heat sources (RF, cables and absorbers already under investigations)
 - influence of concrete on storage ring thermal stability?

THANK YOU FOR YOUR ATTENTION