We present the final engineering design and first commissioning results of two highly integrated experimental stations for the micro-focusing (FMX) and the highly automated (AMX) MX beamlines at the NSLS-II. These beamlines will support a broad range of biomedical structure determination methods from serial crystallography on micro-sized crystals, to structure determination of complexes in large unit cells. These experimental stations are completely designed and fabricated in-house to meet challenging requirements resulting from the small beam size of 1 μm and the extremely short working distance of only 190 mm from the beam exit window to the FMX focal spot.

FMX & AMX specific & new features
- Micro focus beams
- High energy
- Automation
- High flux
- Next Generation Pixel Array Detectors

AMX will support samples that are too small for conventional diffractometers, such as single molecular complexes, bacterial and viral proteins, active complexes in solution, and live cells. AMX will support structure determination programs that require testing of vast numbers of small crystals. AMX will support programs that cannot afford to wait the time required for inhouse sample preparation and crystallography.

FMX Experimental Station Construction Update

AMX Experimental Station Construction Update

FMX

AMX

Flux at focus

Focal spot range

Energy range

Wavelength range

Focal spot min

Focal spot max

Focal spot range

Horizontal slit

Vertical slit

Kappa KB mirror

Goniometer arm

Sample holder

Beam shutter

Detectors

Secondary goniometer

Focusing mirror housing

Sample visualisation

Beam Conditioning Unit

Beam shaping

FMX & AMX’s specific & new features

- Micro focus beams
- High energy
- Automation
- High flux
- Next Generation Pixel Array Detectors

This work is supported by the National Institutes of Health and the US Department of Energy.